Copied to
clipboard

G = S3xC62order 216 = 23·33

Direct product of C62 and S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3xC62, C6:C62, C62:13C6, C33:5C23, C3:(C2xC62), (C3xC62):5C2, (C32xC6):4C22, C32:4(C22xC6), (C3xC6):4(C2xC6), (C2xC6):5(C3xC6), SmallGroup(216,174)

Series: Derived Chief Lower central Upper central

C1C3 — S3xC62
C1C3C32C33S3xC32S3xC3xC6 — S3xC62
C3 — S3xC62
C1C62

Generators and relations for S3xC62
 G = < a,b,c,d | a6=b6=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 404 in 232 conjugacy classes, 126 normal (10 characteristic)
C1, C2, C2, C3, C3, C3, C22, C22, S3, C6, C6, C23, C32, C32, C32, D6, C2xC6, C2xC6, C2xC6, C3xS3, C3xC6, C3xC6, C22xS3, C22xC6, C33, S3xC6, C62, C62, C62, S3xC32, C32xC6, S3xC2xC6, C2xC62, S3xC3xC6, C3xC62, S3xC62
Quotients: C1, C2, C3, C22, S3, C6, C23, C32, D6, C2xC6, C3xS3, C3xC6, C22xS3, C22xC6, S3xC6, C62, S3xC32, S3xC2xC6, C2xC62, S3xC3xC6, S3xC62

Smallest permutation representation of S3xC62
On 72 points
Generators in S72
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)
(1 59 37 45 13 31)(2 60 38 46 14 32)(3 55 39 47 15 33)(4 56 40 48 16 34)(5 57 41 43 17 35)(6 58 42 44 18 36)(7 25 54 65 70 23)(8 26 49 66 71 24)(9 27 50 61 72 19)(10 28 51 62 67 20)(11 29 52 63 68 21)(12 30 53 64 69 22)
(1 39 17)(2 40 18)(3 41 13)(4 42 14)(5 37 15)(6 38 16)(7 68 50)(8 69 51)(9 70 52)(10 71 53)(11 72 54)(12 67 49)(19 65 29)(20 66 30)(21 61 25)(22 62 26)(23 63 27)(24 64 28)(31 55 43)(32 56 44)(33 57 45)(34 58 46)(35 59 47)(36 60 48)
(1 68)(2 69)(3 70)(4 71)(5 72)(6 67)(7 39)(8 40)(9 41)(10 42)(11 37)(12 38)(13 52)(14 53)(15 54)(16 49)(17 50)(18 51)(19 57)(20 58)(21 59)(22 60)(23 55)(24 56)(25 47)(26 48)(27 43)(28 44)(29 45)(30 46)(31 63)(32 64)(33 65)(34 66)(35 61)(36 62)

G:=sub<Sym(72)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,59,37,45,13,31)(2,60,38,46,14,32)(3,55,39,47,15,33)(4,56,40,48,16,34)(5,57,41,43,17,35)(6,58,42,44,18,36)(7,25,54,65,70,23)(8,26,49,66,71,24)(9,27,50,61,72,19)(10,28,51,62,67,20)(11,29,52,63,68,21)(12,30,53,64,69,22), (1,39,17)(2,40,18)(3,41,13)(4,42,14)(5,37,15)(6,38,16)(7,68,50)(8,69,51)(9,70,52)(10,71,53)(11,72,54)(12,67,49)(19,65,29)(20,66,30)(21,61,25)(22,62,26)(23,63,27)(24,64,28)(31,55,43)(32,56,44)(33,57,45)(34,58,46)(35,59,47)(36,60,48), (1,68)(2,69)(3,70)(4,71)(5,72)(6,67)(7,39)(8,40)(9,41)(10,42)(11,37)(12,38)(13,52)(14,53)(15,54)(16,49)(17,50)(18,51)(19,57)(20,58)(21,59)(22,60)(23,55)(24,56)(25,47)(26,48)(27,43)(28,44)(29,45)(30,46)(31,63)(32,64)(33,65)(34,66)(35,61)(36,62)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72), (1,59,37,45,13,31)(2,60,38,46,14,32)(3,55,39,47,15,33)(4,56,40,48,16,34)(5,57,41,43,17,35)(6,58,42,44,18,36)(7,25,54,65,70,23)(8,26,49,66,71,24)(9,27,50,61,72,19)(10,28,51,62,67,20)(11,29,52,63,68,21)(12,30,53,64,69,22), (1,39,17)(2,40,18)(3,41,13)(4,42,14)(5,37,15)(6,38,16)(7,68,50)(8,69,51)(9,70,52)(10,71,53)(11,72,54)(12,67,49)(19,65,29)(20,66,30)(21,61,25)(22,62,26)(23,63,27)(24,64,28)(31,55,43)(32,56,44)(33,57,45)(34,58,46)(35,59,47)(36,60,48), (1,68)(2,69)(3,70)(4,71)(5,72)(6,67)(7,39)(8,40)(9,41)(10,42)(11,37)(12,38)(13,52)(14,53)(15,54)(16,49)(17,50)(18,51)(19,57)(20,58)(21,59)(22,60)(23,55)(24,56)(25,47)(26,48)(27,43)(28,44)(29,45)(30,46)(31,63)(32,64)(33,65)(34,66)(35,61)(36,62) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72)], [(1,59,37,45,13,31),(2,60,38,46,14,32),(3,55,39,47,15,33),(4,56,40,48,16,34),(5,57,41,43,17,35),(6,58,42,44,18,36),(7,25,54,65,70,23),(8,26,49,66,71,24),(9,27,50,61,72,19),(10,28,51,62,67,20),(11,29,52,63,68,21),(12,30,53,64,69,22)], [(1,39,17),(2,40,18),(3,41,13),(4,42,14),(5,37,15),(6,38,16),(7,68,50),(8,69,51),(9,70,52),(10,71,53),(11,72,54),(12,67,49),(19,65,29),(20,66,30),(21,61,25),(22,62,26),(23,63,27),(24,64,28),(31,55,43),(32,56,44),(33,57,45),(34,58,46),(35,59,47),(36,60,48)], [(1,68),(2,69),(3,70),(4,71),(5,72),(6,67),(7,39),(8,40),(9,41),(10,42),(11,37),(12,38),(13,52),(14,53),(15,54),(16,49),(17,50),(18,51),(19,57),(20,58),(21,59),(22,60),(23,55),(24,56),(25,47),(26,48),(27,43),(28,44),(29,45),(30,46),(31,63),(32,64),(33,65),(34,66),(35,61),(36,62)]])

S3xC62 is a maximal subgroup of   C62.77D6

108 conjugacy classes

class 1 2A2B2C2D2E2F2G3A···3H3I···3Q6A···6X6Y···6AY6AZ···6CE
order122222223···33···36···66···66···6
size111133331···12···21···12···23···3

108 irreducible representations

dim1111112222
type+++++
imageC1C2C2C3C6C6S3D6C3xS3S3xC6
kernelS3xC62S3xC3xC6C3xC62S3xC2xC6S3xC6C62C62C3xC6C2xC6C6
# reps161848813824

Matrix representation of S3xC62 in GL4(F7) generated by

6000
0200
0040
0004
,
3000
0600
0010
0001
,
1000
0100
0020
0004
,
6000
0600
0001
0010
G:=sub<GL(4,GF(7))| [6,0,0,0,0,2,0,0,0,0,4,0,0,0,0,4],[3,0,0,0,0,6,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,2,0,0,0,0,4],[6,0,0,0,0,6,0,0,0,0,0,1,0,0,1,0] >;

S3xC62 in GAP, Magma, Sage, TeX

S_3\times C_6^2
% in TeX

G:=Group("S3xC6^2");
// GroupNames label

G:=SmallGroup(216,174);
// by ID

G=gap.SmallGroup(216,174);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,5189]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<